Herleitung Formel Pyramidenvolumen

Quader grün : V =

Pyramide rot : $V = \frac{\Box}{\Box} \cdot V_{Pyramide}$

Pyramide blau : $V = \frac{\Box}{\Box} \cdot V_{Pyramide \ rot}$

,Keil' weiss : $V = \frac{\Box}{\Box} \cdot V_{Quader}$

Pyramide

$$V_{Pyramide}$$
 = $V_{Quader\ gr\"{u}n}$ + $V_{Pyramide\ rot}$ + $\left[\cdot \frac{1}{4} \cdot V_{Pyramide\ rot} \right]$ + $\left[\cdot \frac{1}{4} \cdot V_{Quader\ gr\"{u}n} \right]$

$$=$$
 $V_{\text{Quader grün}}$ + $V_{\text{Pyramide rot}}$ + $V_{\text{Pyramide rot}}$ + $V_{\text{Quader grün}}$

$$= \bigcup \cdot V_{Quader\ gr\"un} + \bigcup \cdot V_{Pyramide\ rot}$$

1 . 4

$$4 \cdot \boxed{V_{\textit{Pyramide}}} = \boxed{}^2 \cdot \boxed{} + \boxed{V_{\textit{Pyramide}}}$$

$$I - \boxed{V_{\textit{Pyramide}}}$$

$$3 \cdot |V_{Pyramide}| = |||^2 \cdot ||$$

$$V_{Pyramide}$$
 = $\frac{ \left[\int_{-\infty}^{2} \cdot \left[\int_{-\infty}^{\infty} \right] dx \right] }{ \left[\int_{-\infty}^{\infty} \left[\int_{-\infty$